
Critical phases in multicomponent fluid mixtures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 2139

(http://iopscience.iop.org/0305-4470/9/12/018)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 9, No. 12, 1976. Printed in Great Britain. @ 1976 

Critical phases in multicomponent fluid mixtures 
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and 
Gruppo Nazionale di Struttura della Materia del CNR, Roma, Italy 

Received 3 August 1976 

Abstract. An extension of Gibbs’ theory of ordinary critical points is presented with the aim 
of describing and classifying higher-order critical phases in multicomponent fluid mixtures. 
A classification scheme based on two topological invariants, namely the dimensionality of 
the critical null space (corank) and the number of thermodynamic equations which 
characterize a critical phase (codimension) is proposed. A classical theorem of Marston 
Morse is used to discuss the phase diagram in the neighbourhood of critical phases of corank 
one and two. 

1. Introduction 

The classical, thermodynamic theory of ordinary critical points, at which two coexisting 
phases become identical, was developed by Gibbs (1876) one hundred years ago. In 
recent years higher-order critical points, at which three or more coexisting phases 
become identical, originally predicted upon phase rule arguments by Kohnstamm 
(1926), have been observed in various fluid mixtures (Griffiths and Widom 1973 for a 
number of references, Lang and Widom 1975) or predicted on the basis of model 
calculations (Grifliths 1975 and references quoted therein). Our purpose in this paper 
is to extend Gibbs’ theory for describing and classifying higher-order critical phases in 
multicomponent fluid mixtures. With the aim of characterizing a tricritical phase (the 
only one so far observed in fluid mixtures) by thermodynamic equations, the problem of 
extending Gibbs’ theory to higher-order critical points has already been considered by 
Krichevskii (1972) and Bartis (1973). However previous proposals for the classifica- 
tions of critical points (Benguigui and Schulman 1973, Chang etaf 1973, Grf i ths  1975) 
do not rely on Gibbs’ method. Benguigui and Schulman (1973) have used Thom’s 
(1972) catastrophe theory to arrive at a classification by ‘type’, an integer which is a 
topological property for transitions derivable from a variational principle; Chang et af  
(1973) have attempted to characterize the topological properties of a critical surface in a 
field space by means of two integers, namely its dimensionality d and its order 8, while 
Grfiths’ (1975) proposal, which is not limited to critical points, is in terms of the 
topological structure of the phase diagram in the field space in the immediate vicinity of 
the point in question. Some of the ideas introduced in these works fit quite naturally in 
our approach and will actually be adopted particularly to avoid, where possible, the 
introduction of new notations or terminology. 
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2. Gibbs’ theory and the classification of critical points 

We shall follow the convention of Griffiths and Wheeler (1970) and divide the 
thermodynamic variables into two classes: ‘densities’ and ‘fields’. The fields (in contrast 
to the densities) have the property that they take on identical value in coexisting phases. 
A characteristic aspect of the classical theory is the use of a set of densities, like the 
energy density and mole fractions, to represent the thermodynamic states of a system in 
contrast to the modern approach (GrifFiths and Wheeler 1970) in which use is made of a 
set of fields, like temperature and chemical potentials. A fluid of c components, in 
absence of external fields, will be described by c + 1 densities p l ,  p2, . . . , pc+l together 
with the corresponding fundamental equation 

c + l  

d u  = xi hi dp, 
1 

where the quantities h, = au/api (i = 1,2,  . . . , c + 1) are the fields conjugate respec- 
tively to the pi. Thermodynamic stability requires that the surface U = o b l ,  . . . , pc+l) is 
either convex or concave. Let us assume for definiteness convexity in all the arguments. 
This will actually be the case, for example, if U represents the internal energy density. 
Now, provided that the second derivatives a2u/api apj = ahi/apj exist, convexity of U 

implies that the quadratic form 

is positive definite or semi-definite. We may investigate this condition by means of a 
diagonalization procedure. A convenient set of diagonal coefficients in our problem is 
suggested by considering the Hessian 

which can be written as the product of c + 1 factors by iterating the following operation: 

to get 

where, at each step 

and, for shortening the notation, only the fields held constant are made explicit in the 
partial derivatives. Obviously (c + l)! different factorizations can be obtained with this 
procedure and they are characterized by the fact that each factor is a derivative of a field 
with respect to the conjugate density. The diagonalization of the quadratic form (2) 
with the diagonal elements specified by equations (6) may be carried out by means of a 
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unimodular transformation of the sort described by Tisza (1961). Thermodynamic 
stability now implies that none of the diagonal coefficients can ever be negative, 
moreover the well known thermodynamic inequalities 

which are usually referred to as the Le Chatelier principle, should be satisfied. 
The classical theory proceeds by postulating a continuous variation of these 

thermodynamic derivatives from stable states, where they take on positive values, to 
unstable states, where at least one of these derivatives takes on negative values. These 
two regions are separated by the limits of stability, the so called spinodal ‘curve’. The 
main conclusion of the classical theory is that a critical phase is a stable one lying on the 
spinodal curve. It follows that the quadratic form (2) becomes positive semi-definite at 
a critical point and at least one of the diagonal elements will be zero. We therefore 
propose to divide critical phases into classes according to the rank or better the corank n 
of the quadratic form (2). By corank we mean the number of vanishing coefficients in a 
given diagonal form and it is to be preferred (in contrast to the rank) because it is 
independent of the number of components. 

In order to understand the physical meaning of this classification we recall that, for 
constant values of the field variables, corresponding to the equilibrium of m phases, the 
coexistence region in the density space is, in general, an ( m  - 1) simplex, i.e. a point for a 
single phase, a straight-line segment for two phases, a plane triangle for three, a 
tetrahedron for four and so on. If we have only two phases in equilibrium, the segment 
representing the coexistence region will determine a direction (one-dimensional affine 
subspace) in the density space. On approaching an ordinary critical point the two 
phases become identical and we assume that the direction of the coexistence region 
approaches a well defined limit, the critical direction. Now the existence of a single 
critical direction is a characteristic feature of critical points of corank 1 regardless of the 
maximum number of phases p which become identical. 

If we have three phases in equilibrium the triangle representing the coexistence 
region will determine in the density space a plane (two-dimensional affine subspace). 
On approaching a critical point we may conceive two essentially different behaviours as 
shown schematically in figure 1. 

A- A 
Figure l. 

In case (a) ,  which corresponds to a tricritical point as it has been actually observed in 
fluid mixtures (Widom 1975), we have a single critical direction, while in case (b ) ,  which 
has been predicted for the two-dimensional three-state Potts model (Straley and 
Fisher 1973), the plane triangle approaches a well defined limit at the critical point. The 
existence of a single critical plane is a characteristic feature of critical points of corank 2 
no matter what the value of p .  It will be shown however in what follows that p a 4 if 
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n = 2. In general, the existence of a critical n-dimensional affine subspace, the null 
space of the quadratic form (2), is a characteristic feature of critical points of corank n. 

We turn now to a description and classification of critical phases within a single class. 

3. Critical phases of corank 1 

For the first class, the critical direction will not, in general, be parallel to any coordinate 
axes or ‘plane’ in the density space. As a consequence all the thermodynamic 
derivatives of the same type of (dhl/dpl)hz,,..,h,+l with c fields held constant, will vanish 
at the critical point. By contrast, according to the classical theory, those ther- 
modynamic derivatives, like (ahl/apl)ha,...,h,+l, in which one or more densities are held 
constant, should remain finite and strictly positive. It may happen however that one or 
more densities take on identical values in coexisting phases. A well known example of 
this behaviour is an azeotropic line on the liquid-vapour equilibrium surface in binary 
systems. In these circumstances the critical direction will be parallel to some coordinate 
‘plane’. If, for example, p2 is such a density the critical direction will be parallel to the 
p2 = pSrif ‘plane’ and (ahl/apl)hs,...,h,+l will vanish while (ah2/ap2)hl,hs,...,h.+I will remain 
positive at the critical point. In any case we may choose thermodynamic variables near 
the critical point such that the vanishing diagonal element will be ahccl/apc+,, i.e. with 
the pccl axes parallel to the critical direction. In this case the density peel will play the 
role of the order parameter, being the only density, up to a constant factor, to take 
on different values in coexisting phases. The remaining c variables now actually behave 
like fields and are really irrelevant for the description of the critical behaviour. This 
change of variables is most conveniently obtained by means of a Legendre transform 

where x =pc+l is the order parameter and g, is convex in x and concave in the field 
variables. 

At a critical point we then have 

a2gl/ax2 = ah,/ax = o (9) 

where h, = agl/dx is the field conjugate to x and stability requires the first non- 
vanishing derivative of g ,  with respect to x to be of even order 24. At an ordinary 
critical phase 4 = 2, and we have therefore the two thermodynamic equations 

a2gl/ax2 = o a3g1/ax3 = o (10) 

while stability requires a4g1/dx4 >O. At a tricritical point 4 = 3 (Bartis 1973, Widom 
1975) and we have four thermodynamic equations 

a2gl/ax2 = o a3g,/ax3 = o a4g1/ax4 = o a5g1/axS = o (1 1) 

and stability requirements are satisfied if a6gl/dx6 > 0. The number of thermodynamic 
equations which characterize a critical phase will be called its codimension K. We have 
therefore K = 2 for an ordinary critical point, K = 4 for a tricritical point and in general 
K = 24 - 2. Either K or q may be used to make a complete list of different critical points 
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in the first class. For a given q the phase diagram in the critical region is then obtained 
expanding g ,  as a power series of x 

g,(x; h l , .  . . 3 h c )  

= gl(hl ,  . . . , hc)+al (hl ,  . . . , h,)(x -x,> 

+&(hl, .  . . , h,)(x --XJ2+. . . +(x -XJ24 

where only terms up to the first non-vanishing coefficient have been retained and the 
coefficient of the highest power, which has to be positive, has been assumed to be 1. In 
general two or more phases in equilibrium should have the same value, say a, for h, and 
the same value for g ,  -xh,. These two conditions express the well known common 
tangent construction. The equation, 

h,(x;  h l ,  . . . , h,) = a (13) 
an algebraic equation of order 2q - 1 with real coefficients, has at least one real root and 
a maximum of 29 - 1 distinct real roots. A possible graph representing g ,  - a x  as a 
function of x in a multiphase region is shown qualitatively in figure 2. 

Figure 2. A possible graph representing g, - a x  as a function of x in a multiphase region 
near a critical point of corank 1. 

If we denote by m ,  the number of maxima in a graph like this and by mo the number 
of minima, we have the two relations 

mo + m l  s 2q - 1 (14) 

m o s 9  (15) 

m o - m l  = 1 

which provide the following inequality for mo: 

which in turn gives p = 9. Note that p is the ‘order’ of the critical point according to 
Widom (1973) terminology. 

The entire phase diagram could be determined by making a catalogue of the various 
possibilities for the solutions of equation (13), for example with the method proposed 
by Krinsky and Mukamel(l975) and adopted by Griffiths (1975). 

In what follows we will show how this discussion may be extended to critical points 
of higher corank. 

4. Critical phases of corank 2 

If n = 2 we have a critical plane which, in general, will not be parallel to any axes or 
‘plane’ in the density space. As a consequence the two vanishing diagonal coefficients 
will be (dhl/dPl)hz,.. . ,h,+, and (8h2/dp2)h3,. . . ,h,+l while those thermodynamic derivatives, 
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like (dh3/a~3)h4,,,.,h,+l, in which two or more densities are held constant, should remain 
finite and strictly positive. As in the case of critical points of the first class special 
geometrical relationships may occur but in any case we may choose our variables near 
the critical point so that the vanishing diagonal elements are ~ h c + l / a p c + l  and 
(ahc/apc)h,+l. With this choice, the densities pc+l = x and pc = y will play the role of 
order parameters, being the only two densities, up to a linear transformation, to take on 
different values in coexisting phases. In close analogy with the previous case, the 
change of variables is accomplished by the following Legendre transform of U :  

c-1  

g2(x9y;h1,h2 , . . e  , h c - 1 ) = u b 1  , . ' .  ,Pc-l;y,x)- 1,hKPK (16) 
1 

which is convex in both x and y and concave in the field variables. The first three 
thermodynamic equations for a critical point of the second class are then 

a2g2/ax2 = o a2g2/ay2 = o a2gz/ax ay = o (17) 
andstability requires that the first non-vanishing derivative of g2 with respect to x or y is 
of even order 24. For q = 2 we get the critical phase of lowest codimension. All the 
third-order derivatives vanish: 

a3g2/ax3 = o a3g2/ay3 = o a3g,/ax2 ay = o a3g2/ay2 ax = o (18) 
while the fourth-order derivatives should obey certain inequalities in order to guaran- 
tee the convexity of g,. 

Equations (17) and (18) are the seven thermodynamic equations which characterize 
the critical phase of corank 2 of lowest codimension. It should be noted at this point that 
the four equations proposed by Krichevskii (1972) for a tricritical point are obtained by 
taking the first two in each set (17) and (18). 

The next critical point with n = 2, corresponding to q = 3, will have K = 18 and in 
general K = q(24 + 1) - 3. In the spirit of the classical theory, in order to determine the 
phase diagram in the critical region, for a given value of 4, g, will be represented by a 
polynomial in x and y of even order 2q whose coefficients are real, smooth functions of 
the fields hl ,  h2, . . . , hc-l. In general, the points representing a set of coexisting phases 
should have a common tangent plane that is the same value for h, = ag2/ax, h, = ag,/ay 
and g, - xhx - yh,. We have now a system of two real algebraic equations 

k ( x ,  y ;  h i , .  . . , h c - i ) = a  h,(x, y ;  hl,  . . . , hc-1) = P (19) 
which has at least one real root and a maximum of (29 - 1)2 distinct real roots. A 
possible graph representing g, - xh, - yh, as a function of x and y in a multiphase 
region is qualitatively shown in figure 3. Under these conditions a general result, 
obtained by Morse (1925) for a real function of n independent variables and for a 
domain of definition not necessarily simply connected, seems to be applicable. 
Accordingly if we denote by mo the number of minima, by ml the number of saddle 
points and by m2 the number of maxima in a graph like that in figure 3 we have 

mo+m, + m2 s (2q - 1)2 mo-ml+m2=l  (20) 

mo+ m2 s 2q(q - 1) + 1. (21) 

from which 

Let us consider in detail the case q = 2. If m2 = 0 we have mo S 5 and therefore ml s 4. 
A configuration of this type with a maximum of five coexisting phases is expected to be 
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Figure 3. A possible graph representing g , - a x - p y  as a function of x and y in a 
multiphase region near a critical point of corank 2. 

found in the neighbourhood of the critical point of the first class with K = 8. We 
therefore exclude the possibility that the same situation might occur in the present case. 
With m2 = 1 we get from equation (21) 

P = 2q(q - 1) (22) 
which gives p = 4 for q = 2. This result confirms a previous suggestion by Grf i ths  
(1975). When we 6ave four coexisting phases there are two cases which must be 
distinguished. In the first, the four points of contact of g2  with the quadruple tangent 
plane may be joined so as to form a convex quadrilateral; in the second, one of the 
points of contact lies within the triangle formed by joining the other three. Figure 4(a )  
gives a somewhat stylized representation of the approach to the critical point in the first 
case. (For the sake of comparison figure 4(b)  shows schematically the approach of a 
quadruple point to a critical phase with n = 1 and K = 6.) 

Figure 4. 

The four vertices of the quadrilateral correspond to the four coexisting phases or hills of 
g,, the four sides to the cols and the intersection of the diagonal to the single basin. For 
this configuration we have mo- m ,  + m2 = 1 and mo+ m, + m2 = 9 it may therefore 
occur in the neighbourhood of the critical point with n = 2 and K = 7. But when the 
point of contact lies within the triangle formed by joining the other three (figure 5), we 



2146 L Mistura 

Figure 5. 

have mo = 4, m l  = 6 and m2 = 3, therefore mo + m l  + m 2  = 13 and such a configuration 
cannot occur in the neighbourhood of the critical point with K = 7, but we must have at 
least K =  18. It is interesting to remark at this point that a triple point which is 
essentially different from that observed in the tricritical region (figure l(a)) should exist 
in the neighbourhood of the critical point with K = 7. Indeed for a configuration in 
which the system of equations (19) has seven distinct real roots we may have mo = 3 with 
m l  = 3 and m2 = 1, that is a graph for g, with three hills, three cols and a single basin 
which on approaching the critical point could behave as schematically shown in figure 
l(b). These aspects of the phase diagram can also be studied, with the help of Morse 
(1925) theorem, for critical points of higher corank. However owing to the higher 
codimension of these critical phases we have not found this study of great interest so far. 

5. Concluding remarks 

A possible notation for the critical points discussed in the previous sections is as follows. 
A capital letter, as proposed by Griffiths (1979,  to indicate the maximum number of 
phases which become identical, a subscript to indicate the codimension K and a 
preceding superscript will give the corank n. Accordingly an ordinary critical surface 
will be identified with the symbol 'B2 a tricritical surface 'C, and the critical phase of 
lowest codimension with n = 2 will be *D7 and we should have next 3N16, etc. Because 
the codimension K is related to the maximum number of phases our notation is 
redundant. We feel however it has the advantage of readily providing some relevant 
topological properties of a critical surface. 

We should mention in conclusion that a more elegant geometric formulation of the 
theory is possible which has the advantage of introducing a coordinate-free language. 
Indeed even if a thermodynamic space, i.e. the set of all thermodynamic states of a 
system, can be regarded as a subset of a vector space it cannot be so regarded in any 
canonical way and in fact linear and non-linear changes of variables are frequently used 
in thermodynamics. We would therefore like to know what properties are independent 
of the description we give of the space. With this in mind we will now briefly outline a 
description of the concepts of thermodynamics within the framework of differential 
topology, i.e. that branch of differential geometry which studies the more general, 
purely topological properties of differentiable manifolds (Milnor 1969). We agree with 
Smale (1972) that a principal candidate for the state space of a system should be a 
differentiable manifold. We will assume therefore that the thermodynamic states of our 
system are represented by the points x of a (c + 1)-dimensional differentiable manifold 
M so that at least locally, the states can be put into a one-to-one continuous correspon- 
dence (homeomorphism) with the points of an open set of the (c + 1)-dimensional real 
linear space RC+l .  The mere differentiability of the manifold permits one to introduce 
curves (quasi-static processes), differentiable functions (thermodynamic state vari- 
ables) and relations of local parallelism and linear differential forms, but does not mean 
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that such concepts as parallel transport, curvature and metric, which play a central role 
in the theory of gravitation, exist in it. 

A coordinate system in the thermodynamic space is a set of c + 1 real differentiable 
functions xl(x), x2(x), . . . , xc+l(x) on M. Coordinate transformations x i  = 
xI(xl, x2 ,  . . . , x,+~) should provide locally a one-to-one differentiable map, in particu- 
lar, therefore, the Jacobian a(x:, xk, . . . , xScl)/d(x1, x 2 , .  . . , xCcl) should not vanish. 

A basic role in Gibbs' theory of thermodynamic stability is played by the function 

where p f ,  T, pi ,  , . . , p: are constants to be determined by the equilibrium conditions, E 

is the internal energy density, U the entropy density, p l ,  p2, . . . , pc the mass densities of 
the c components. The stable equilibrium states are defined by the following varia- 
tional principle (Gibbs 1876): if for a given state of the fluid, it is possible to assign such 
values to the constants p I, T', pi ,  . . . , p: that @ is zero and positive for any other state in 
its neighbourhood then the given state of the fluid will be stable. 

The intrinsic nature of this statement is not usually recognized. By contrast, in order 
to work out from this principle the several conditions of stability a definite set of 
independent variables is introduced, namely the entropy density and the densities of the 
various components. Admittedly this particular choice is strongly suggested by the 
expression (23), we have therefore to show how the consequence of the principle may 
be worked out without any reference to a particular set of variables. 

Stable states correspond to critical points of @ in the sense of differential topology, 
i.e. points where the derivative of @ vanishes (Milnor 1969). Following this terminol- 
ogy stable critical phases correspond to degenerate critical points of @. These two 
notions are independent from the choice of the coordinate system as can be readily 
verified directly. Indeed, in a given coordinate neighbourhood of a critical point 
a@/dx, = 0 (I = 1 ,2 ,  . . . , c + 1) and therefore also 

a@ c + l a @  ax -= c --=oo. 
ax:, lax, ax:, 

On the other hand for the second-order derivatives we have in general 

but the second term on the right-hand side vanishes at a critical point with the 
consequence that the matrix a'@/&, axi represent a tensor with respect to the basis 
(a/axl, a/ax2,. . . , a/ax,+,>. The shape of @ in the neighbourhood of a stable normal 
state is determined by the lemma of Morse (1925). To the author's knowledge there is 
no comparatively general result for the shape of @ in the neighbourhood of a critical 
phase. According to the results obtained in this paper the study of phase diagrams near 
a critical point in multicomponent fluid mixtures may help to elucidate this problem. 
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